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Modulated structures in Langmuir monolayers and in smectic films
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Modulated structures have been observed in nonchiral systems such as Langmuir monolayers and
freely suspended smectic films, and a mechanism involving spontaneous chiral symmetry breaking
has recently been suggested to account for the occurrence of these structures. We study a simple
model corresponding to this mechanism in the mean-field approximation. We find that the model
exhibits two uniaxially modulated phases (the director field is colinear or noncolinear) and a vortex-
lattice phase, in addition to the two uniform ordered phases (one chiral and one nonchiral) and
the disordered phase. The high-temperature transition from the uniform nonchiral phase to the
noncolinear uniaxial phase is found to be of third order; it belongs to a peculiar, intermediate class
of transitions that has previously been suggested to occur in chiral systems. The low-temperature
transition from the noncolinear uniaxial phase to the uniform chiral phase is second order, but also
peculiar, because the wave number vanishes linearly at the transition; the modulated phase just
above the transition is best described as a spatially varying commensurate phase with walls.

PACS number(s): 64.70.Md, 61.30.Cz, 68.10.—m, 68.15.+¢

I. INTRODUCTION

Langmuir monolayers and freely suspended thin smec-
tic films have attracted considerable interest because
their reduced dimensionality allows a variety of modu-
lated structures [1-11] and hexatic phases [12,13], in ad-
dition to the common smectic phases of the bulk. These
modulations reflect an inhomogeneous, periodic ordering
of the molecular tilt (which is perpendicular to the lay-
ers in the smectic-A phase and tilted in the smectic-C
phase). In uniaxially modulated phases, the tilt forms a
striped pattern of parallel defect walls separating homo-
geneously ordered regions [1-3]. Two-dimensional spiral
star defects have also been observed [4]. The appearance
of modulated structures in related systems was first ob-
served in materials composed of chiral molecules [1-3].
Theoretical understanding of these structures has been
provided within a general framework of competing in-
teractions which are expected to exist in chiral systems
[2,8,9]. More recently, however, observation of modulated
textures in smectic films composed of nonchiral molecules
has been reported [4-7]. A mechanism for inducing inho-
mogeneous patterns in nonchiral films has been suggested
[10]. The effect of a coupling, which may exist in thin
films, of the director field to the hexatic order parameter

*Present address: Institute of Physics, College of Arts and
Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo,
Japan 153. Electronic address:
tohyama@mani.c.u-tokyo.ac.jp

tElectronic address: jacobs@physics.utoronto.ca

Electronic address: fnmukaml@wicc.weizmann.ac.il

1063-651X/96/53(3)/2595(8)/$10.00 53

has also been considered [14].

To analyze the possible phase diagrams and the phase
transitions separating the various phases in these sys-
tems, one usually introduces a Landau-Ginzburg (LG)
model corresponding to the order parameter. In the case
of tilted molecular films or monolayers, the order parame-
ter is the local director field ¢ = (¢, ¢y), which represents
the projection of the molecular tilt onto the layer plane.
The LG model must be invariant under the symmetry
operations of the disordered phase; for chiral systems it
must be invariant under rotations and translations, and
for nonchiral systems it must also be invariant under a
mirror symmetry in the plane. The free energy corre-
sponding to chiral systems takes the form

F = /dzr Fole(r)], (1a)

where the free-energy density is [2,8,9]
Fole(r)] = Lac® + 1Bc* + LK 1(V -¢)® + 1K3(V x ¢)?
+uc’V-c. (1b)

Here K; and K3 are the Frank elastic constants; the pa-
rameters a and 3 control the magnitude ¢ of the vector
order parameter c. The free-energy density is invariant
under rotations and translations; as expected, for chiral
systems it is not invariant under the mirror symmetry
¢ — —c. An appropriate free energy for the nonchi-
ral case is given by the model (1) with 4 = 0. The pu
term contributes to the free energy only when c? varies
with r; otherwise it becomes a surface term and may
be neglected. The phase diagram of this model exhibits
a disordered phase (in which ¢ = 0), a uniform phase
with constant order parameter ¢, and modulated phases
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in which c is a periodic function of r. The modulated
structures are driven in this model by the u term, which
is linear in the gradient operator and therefore favors in-
homogeneous ordering; this term competes with the elas-
tic terms K; and K3, which favor homogeneous ordering
when they are positive.

The phase diagram of the model (1) with Ky, K3 > 0
has been studied in some detail [2,8,9,15-18]. The model
exhibits two types of modulated phases, one uniaxial
(striped) and the other hexagonal. The second-order
transition from the disordered to the uniaxial phase is
of a peculiar type, with characteristics of both first- and
second-order transitions, intermediate between the two
common types (instability and nucleation) of second-
order transitions; further, the structure is universal, in-
dependent of the parameters which enter the LG model.
Section III discusses this third, intermediate type of
second-order transition in more detail.

In studying the phase diagram of nonchiral systems,
one has to consider the model (1) with 4 = 0. Here
modulated structures may be obtained when one of the
elastic constants becomes negative; in this case, one has
to add higher-order terms to the model (1b), say (V -c)*
or (V x c)4, to stabilize it.

An exceptionally interesting paper [10] suggested a
simple mechanism which drives the effective constant K3
negative in nonchiral systems; such systems may undergo
a phase transition in which chiral symmetry is sponta-
neously broken. When this happens, the constant K3
is reduced and may become negative, yielding modu-
lated structures. Reference [10] suggested several ways in
which chiral symmetry may be spontaneously broken in
a Langmuir monolayer: (i) in a racemic mixture, a phase
separation may take place forming chiral domains; (ii)
the molecules in the two-dimensional surface may pack
locally in two inequivalent ways which are mirror im-
ages of each other; (iii) in a tilted hexatic phase, the tilt
can be at an arbitrary angle to the local bond direction.
Corresponding ways were suggested for freely suspended
smectic films.

To analyze this mechanism in more detail, one intro-
duces a pseudoscalar chiral order parameter 9 (r) in addi-
tion to the director field ¢(r). The LG free-energy density
[10]

F = 16(VY)? + 3ty? + tuy* + 1K1 (V - ¢)?

—}-%K;;(V x c)? + %ac2 + %,804 — APz (V xc)

(2)
corresponding to these two order parameters is a sum of
the usual densities for a pseudoscalar ¥ and a director
field ¢ plus a coupling term with coefficient A; this term
is permitted by symmetry since both 3 and V x ¢ change
sign under reflection. To see that this coupling effectively
reduces K3, consider the system near (but above) the
transition from a nonchiral ¥ = 0 phase to a chiral ¢ # 0

phase; here t > 0 and one may neglect the x and u terms.
Minimizing the free energy with respect to ¥, one finds

¥~ (D)2 (Y xe) . (3)

Inserting this relation into (2), one obtains an effective
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LG model for the director field c; in this model the ef-
fective constant K3 is K3 — AZ/(2t), and so may become
negative near the transition to the chiral phase.

The model (2) was studied by Selinger et al. [10] within
the mean-field approximation, but numerically only for a
unit director field ¢ = (cos ¢,sin ¢); four ordered phases
were found, two uniform and two modulated, and a
schematic (), t) phase diagram was suggested. One uni-
form phase is nonchiral (¥ = 0) and the other chiral
(¢ # 0). One modulated phase is uniaxial (striped), with
constant amplitude |c|, and the other two-dimensionally
modulated (a square lattice of cells with alternating pos-
itive and negative chirality).

In this paper we study the model (2) without impos-
ing the constraint |c| = const. We carry out a detailed
numerical study of the mean-field (), t) phase diagram,
and we analyze the various phase transitions. Our main
findings are the following.

(1) We find a fifth ordered phase, in addition to the
four ordered phases found in Ref. [10]. The new phase is
uniaxial with a colinear structure. It is striped (like the
“stiff” noncolinear striped phase found previously [10]
under the constraint |c| = const), but “soft” because the
magnitude of the director field vanishes periodically; it
cannot be obtained under the above constraint.

(2) The transition from the uniform nonchiral phase to
the stiff striped phase is a third-order transition, rare in
the theory of modulated systems. Moreover, this transi-
tion is rather different from ordinary continuous transi-
tions leading to modulated structures, for it belongs to an
intermediate class of transitions in which the harmonic
content of the modulated phase close to the transition
is nontrivial, even though the order parameter is van-
ishingly small (explicitly, the amplitudes of the higher
harmonics do not become negligibly small compared to
that of the fundamental as the transition is approached).
In previous studies, transitions of the intermediate class
were induced by terms like the p term of Eq. (1); here,
however, no such term exists, and the transition is driven
by the coupling between the order parameters ¢ and c.

(3) The transition between the soft and stiff striped
uniaxial phases belongs to the Ising universality class.

(4) The transition from the stiff striped phase to the
uniform chiral phase is unusual because the wave num-
ber vanishes linearly and because the modulated phase
near the transition contains no regions where the order
parameters are even roughly constant; the source is the
continuous degeneracy of the uniform state.

II. PHASE DIAGRAM AND PHASES

This section describes the phase diagram and the struc-
tures of the various phases; the next section describes the
nature of the phase transitions.

We obtained the mean-field (A, t) phase diagram by nu-
merical minimization of the free energy for the density (2)
for the choices Ki =Kz =K, k=K =u=—-a=0=1
of the parameters; the results are more general, for there
are four scaling parameters (the magnitude of 3, the
magnitude of ¢, the magnitude of the free energy, and the
distance scale). All coefficients but t are assumed to be
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independent of temperature T' (in particular, the assump-
tion that « is independent of T' means that the transition
from the disordered phase ¢ = 0 occurs well above the
other transitions). The corresponding Euler-Lagrange
equations were solved with periodic boundary conditions,
either in a segment of length L for one-dimensional (1D)
patterns, or in an L x L cell for 2D structures (for the
latter, the solutions were obtained by minimizing the free
energy using a conjugate-gradient method); the average
free-energy density of these solutions was then optimized
with respect to the cell size L.

The Euler-Lagrange equations for ¢ and ¢ have uni-
form solutions and many modulated solutions; all solu-
tions are continuously degenerate (can be rotated arbi-
trarily in the z-y plane).

Uniform solutions. The disordered phase ¢ =0, ¢ =0
is of no interest. Both the uniform nonchiral (UNC)
phase and the uniform chiral (UC) phase are described
by a uniform director field ¢ of magnitude |¢| = ¢o [where
co = (—a/B)Y/? = 1 for the above parameters] and ar-
bitrary direction in the z-y plane. In the UNC phase,
which is the equilibrium structure for ¢ > A2/K, the
order parameter 1 is zero. In the UC phase, which is
the equilibrium structure for ¢ sufficiently less than zero,
|| = o, where 99 = (—t/u)/?; the UC phase is addi-
tionally degenerate with respect to the sign of .

Striped solutions. For the solutions modulated in one
dimension, we choose the z axis to lie along the modula-
tion direction so that c,, ¢y, and 1 are independent of y.
We f~d two classes of striped solutions: For the “stiff”
striped phase, which is noncolinear, ¢, and 7 oscillate
about zero while ¢, and |c| oscillate about nonzero val-
ues; for this class, there exist two subclasses of solutions,
those which are winding in character and those which are
nonwinding (we find that the latter have the lower free
energy). For the “soft” striped phase, c, is identically
zero, while ¢, and v oscillate about zero; this phase is
colinear (c is everywhere parallel or antiparallel to some
direction).

Two-dimensional solutions. Solutions modulated in
both directions are of course far more numerous; we find
that the best 2D solutions are those for the square vor-
tex lattice. Two other classes of solutions were found,
the first with nodes of ¢ on a triangular lattice (without
sixfold symmetry, however), and the second labyrinth so-
lutions [like that of Fig. 2(b) of Ref. [10]]; these other so-
lutions are optimal at nonoptimal values of g, but decay
to those for the square vortex lattice as ¢ is optimized.

Figure 1 gives the numerical (not schematic) phase di-
agram which we find for the above choice of the Lan-
dau parameters; it shows five ordered phases described
above. The major differences from the schematic dia-
gram of Ref. [10] are the region of soft stripes and the
order of the transition from the uniform nonchiral phase.
For A = 0, there is a second-order transition at ¢ = 0
between the UNC and UC phases; for A # 0, we find as
few as two transitions and as many as six.

Figures 2 through 5 display the structures of the mod-
ulated phases at selected points on the line A = 2, along
which the phase sequence with decreasing ¢ is uniform
nonchiral (¢ = 4, third-order), stiff stripes (¢ = 2.59, first-
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FIG. 1. The mean-field (A, t) phase diagram of the model
(2) showing the regions of stability of the five ordered phases.
First-order transitions are plotted with solid lines, sec-
ond-order transitions with dashed lines, and the third-order
transition with a dotted line; orders of the transitions are
also indicated next to the lines. The Landau coefficients are
k=Ki=Ks=u=-a=8=1.

order), vortex lattice (¢ = —0.23, first-order), soft stripes
(t = —5.226, second-order), stiff stripes (¢ = —6.604,
second-order), and uniform chiral.

Figure 6 shows the  component of the wave vector
q as a function of ¢ along the same line. Discontinuities
occur at the first-order transitions to and from the vortex
state. The wave number vanishes linearly at the low-
temperature transition to the uniform chiral phase, due
to the continuous degeneracy (as discussed in Sec. III).

The following provides additional detail on the phases.
At t = A%?/K, there is a third-order transition from the
UNC phase to the stiff striped phase in which both c and
1 are uniaxially modulated along some direction. The
amplitudes of the oscillations in all three quantities (cq,
¢y, and 9) are small just below the transition, and grow
with decreasing t, as shown in Fig. 2; the average value
of the amplitude |c| is the uniform value ¢y at t = A%/ K,
and decreases with t. The system is locally chiral (since
1 # 0), although it is nonchiral when spatially averaged.
For lower t and for sufficiently large ||, the optimal struc-
ture is a square lattice of cells with alternating positive
and negative chirality; the cells are separated by walls
across which 1 changes sign. The director field has vor-
tices at the centers of the cells, and antivortices at the
corners, as shown in Fig. 3. Of course this structure can
be obtained only if the magnitude |c| of the director field
is free to vanish, for the phase changes by +27 around
each vortex. The director field c circulates about each
vortex, like the superfluid velocity v for vortices in su-
perconductors, but the similarity is only superficial: In
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superconductors, the optimal packing is the triangular
lattice because all vortices have the same chirality and
v vanishes on the cell boundaries (and diverges at the
cores); the uniaxial phase always has higher energy than
some other phase. Here, on the other hand, the optimal
packing is the square lattice because the vortices have
both chiralities (there also antivortices) and |c| is large
on the cell boundaries (and vanishes at the cores of the
vortices and antivortices); there are two uniaxial phases,
each stable in part of the phase diagram.

At still lower t, for sufficiently large |A|, the system
next becomes uniaxial with soft stripes, as shown in Fig-
ure 4. A reentrant transition to the stiff striped phase
takes place at yet lower t; Fig. 5 shows typical structures
of this phase. The domain walls occur where 3 = 0;
the peaks in ¢, would likely be suppressed on including
higher-order terms in c? in the density. The structure
of the domains is unusual, for the director field c is not
constant within the domains (although its magnitude is
almost constant at the lower value of t). A second un-
usual feature is that the wave number vanishes linearly
at the transition to the UC phase. The explanation lies
in the continuous degeneracy of the uniform state.

III. PHASE TRANSITIONS

We now discuss the nature of the transitions be-
tween the various phases, beginning with some gen-
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FIG. 2. Structure of the stiff striped phase for A = 2: (a)
at ¢ = 3.8 (near the transition from the uniform nonchiral
phase, ¢ = 0.257) and (b) at t = 2.59 (at the transition to the
vortex phase, ¢ = 0.704).
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eral comments on second-order transitions from unmodu-
lated phases (either disordered or uniform) to modulated
phases. These transitions are broadly divided into three
classes: instability, nucleation, and an intermediate class
which has characteristics in common with the other two.

(1) Instability transitions (such as transitions from
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FIG. 3. Structure of the vortex phase for A =2 and t = 1;
gz = gy = q = 0.624. Part (a): local director field c(z,y);
the length of the arrows is proportional to the magnitude of
c. Part (b): contour plot of ¥(z,y); solid and dashed lines
represent 1 > 0 and ¥ < 0, respectively; contours are drawn
at ¢ = +0.1,£0.3,. ..
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disordered to spin-density-wave or charge-density-wave
structures) are characterized by a small order parame-
ter, usually the Fourier amplitude S(q) of the local or-
der parameter S(r); here 27 /q is the wavelength of the
modulated structure, and ¢ = |q| is the wave number.
Two features are typical of these transitions. First, ¢ is
nonzero at the transition, meaning that the modulated
structure has a finite wavelength at the transition. Sec-
ond, the amplitudes of the higher harmonics of the order
parameter, namely S(nq) with n > 1, become negligi-
bly small compared with that of the fundamental as the
transition is approached; that is, the ratios S(nq)/S(q)
for n > 1 vanish at the transition. The modulated phase
thus has trivial structure at the transition, a fundamental
mode only.

(2) Nucleation transitions (which usually occur be-
tween uniformly ordered and modulated phases) are
rather different, taking place via condensation of local-
ized domain-wall-like structures separating regions which
are locally uniform. These transitions have no small local
order parameter, since the domain-wall-like objects are
large perturbations of the uniform phase. As the tran-
sition is approached from the modulated side, the aver-
age distance between the localized domain walls diverges,
resulting in a transition to a uniform phase. Unlike in-
stability transitions, here the characteristic wave number
approaches zero at the transition. Moreover, because of
the localized nature of the domain walls, the structure
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FIG. 4. Structure of the soft striped phase for A = 2: (a) at
t = —0.23 (at the transition from the vortex phase, ¢ = 0.979)
and (b) at t = —5.225 (just above the transition to the stiff
striped phase, ¢ = 0.659).
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FIG. 5. Structure of the stiff striped phase for A = 2: (a)
at t = —5.5 (below the transition from the soft striped phase,
g = 0.567) and (b) at t = —6.57 (close to the transition to
the uniform chiral phase, ¢ = 0.0243).

of the modulated phase near the transition is nontriv-
ial, and higher harmonics are of the same order as the
fundamental.

(3) A third, intermediate, type of transition to modu-
lated phases may occur [9,15-18] in systems characterized
by a vector order parameter p (e.g., ferroelectrics or chi-
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FIG. 6. = component of the wave vector q as a function of
the Landau parameter t for A = 2 for the optimal modulated
phase. The wave number is continuous at the second-order
transition between the soft and stiff uniaxial solutions, and
discontinuous at the first-order transitions to and from the
vortex phase. It vanishes as (t. —-t)l/ 2 at the high-temperature
transition to the uniform nonchiral phase, and as t — t. at the
low-temperature transition to the uniform chiral phase, as
explained in the text.
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ral films) and for which a cubic term like p?V - p occurs
in the Landau expression for the free energy. As in insta-
bility transitions, the transition into a modulated phase
(induced by the cubic term) is characterized by a small
local order parameter p(q) which goes continuously to
zero at the transition. As in nucleation transitions, how-
ever, the wave vector q vanishes at the transition and the
harmonic content of the modulated phase is nontrivial;
the amplitudes of the higher harmonics are of the same
order as the fundamental mode and therefore may not be
neglected.

For the model of Eq. (2), we find that the transi-
tion from the uniform nonchiral phase to the stiff striped
phase is of this intermediate type, even though the den-
sity contains no cubic term like that discussed above.
The transition from the uniform chiral phase to the
stiff striped phase is of nucleation type, as obtained in
Ref. [10], but it too is unusual. The following provides
a detailed analysis of the phase transitions found in this
model.

A. Transition from the uniform nonchiral phase

The uniform nonchiral phase is described by the order
parameters ¢, = cp cos @, ¢y = cpsing, and ¢ = 0, where
¢ is an arbitrary constant phase which we can take to be
zero. Reference [10] showed that this phase is unstable
when ¢ is less than the value t. = A\2/K: a perturbation
of the form ¢,  sin(gz) to the particular state c, =
cg, ¢y = 0, ¥ = 0 drives ¢ away from zero, generating
a chiral, one-dimensionally modulated phase, as can be
seen from Eq. (5a) below.

Our initial analysis of this transition involves two re-
strictions, both removed later. (1) The amplitude |c| in
the uniaxial phase has the constant value cg of the uni-
form nonchiral phase. This restriction allows us to write
(cz(x),cy(x)) = co(cos @(zx),sin p(x)); the Landau coef-
ficients are normalized so that ¢ = 1. (2) The elastic
constants K; and K3 have the same value (denoted by
K). With these restrictions, the free-energy density F
(relative to the uniform nonchiral phase) and the cor-
responding Euler-Lagrange equations for the functions

¥(x) and ¢(zx) are
F=L1e()? + Lty® + 1wy + 1K (¢')? — Mo/ coss ,
(4)
—kp" + th + up® — Ap/cosgp =0, (5a)
—K¢" + M\p'cos¢p =0 . (5b)

Suitable boundary conditions are ¢(0) = ¢(L) = 0 and
¥'(0) = ¥’'(L) = 0, where L = 27 /q is the spatial period;
¢(x) and 9 (z) are odd and even functions of z, respec-
tively.

We expand in € = t. — t about the particular uni-
form nonchiral state with ¢, = 0, using the following
results [10] for the scaling behavior as € — 0%: (z) =
O(e)¥(gz), ¢(x) = O(e/?)®(gz), and g = O(e!/?); the
last means that ¥'(z) = O(e*/?), for example. The free-
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energy density and the differential equations are then

F=3e()" + jtv + 3K (#)" - Av e (1- 567
+0(e4) (6)
—ry" + 1 — A (1 - 36%) = O(e%) (7a)

~K¢" + M (1 - 3¢%) = O("%) ; (7b)

here and in the following we keep only the leading terms
explicitly. Equation (7b) and the boundary conditions
allow us to eliminate ¥ (x) using ¥ (z) = K¢'(z)/ A+ (z);
an explicit expression is not needed for the function % (z),
which is of order €2 and whose derivative is

P (x) = K$*¢" /(2X) + O(¢"/?) (8)

because the density is stationary in leading order. Equa-
tions (6) and (7) reduce to

o B -5 ] o o

—-Ii(ﬁ”” _ fd’” +tc[¢(¢l)2 + d)zd)u] _ 0(67/2) . (10)

To simplify these results we change variables to X =
gz, ®(X) = (t./€)Y/? ¢(z), and Q = (r/€)*/? g; both the
function ®(X) (which has period 27, independent of ¢)
and the constant Q are of order €°. The density and the
differential equation are then

eSK3
T 2rMd

[@*(@")" - @’ - #%)(2)*] + O(eh) (1)

—szbl’" _ (I)" + ¢(¢/)2 + @2@” — O(E) (12)

with boundary conditions ®(0) = @(27) = 0 and
®"(0) = ®"(27) = 0. All terms on the left-hand side
of Eq. (12) are of order €°.

The two important results for the phase transition are
obtained by inspection of Egs. (11) and (12). First, the
free-energy difference of Eq. (11) vanishes as €2, and so
the transition from the uniform nonchiral phase is third
order (not second order as found previously, account-
ing for the unusual critical exponents cbtained in mean
field). The characteristic critical exponents of this tran-
sition may, of course, be modified when fluctuations are
taken into account. It would be interesting to carry out
renormalization-group calculations of this transition and
to characterize its universality class. Second, as € — 0,
the function ® and the constant Q become independent of
the temperature. Therefore ®(X) is a universal function;
in fact it is independent of all the Landau parameters.
Further, the universality is nontrivial because all Fourier
coefficients are of the same order at the transition; explic-
itly (except in the trivial case o = 0), (X ) = ®¢sin X
is not a solution of Eq. (12), although the harmonic con-
tent turns out to be small. The transition from the uni-
form nonchiral phase is then of the third (intermediate)
type discussed above.

The optimal constant @ (which determines the spatial



53 MODULATED STRUCTURES IN LANGMUIR MONOLAYERS AND . ..

period) and the optimal function ®(X) are determined
by minimizing the free-energy difference F' = [ Fdz with
respect to Q; for given Q, Eq. (12) (with the right-hand
side set to zero) is solved for ®(X) and the result sub-
stituted into Eq. (11). We find that @ = 0.557, and
that the average free-energy density (F) = L~1 fOL Fdz
is —0.0394€3 to leading order in €; the maximum value of
® is 1.191. The amplitudes of the higher harmonics are
proportional to that of the fundamental, but are rather
small (the amplitude of the third harmonic is less than
0.04 times that of the fundamental), and decrease geo-
metrically with increasing order. The numerical solution
is thus well approximated by the trial function [10]

(¥(z), ¢(2)) = (Yo cos(qz) , posin(qz)), (13)

which gives @ = 0.577, the free-energy difference as
—e3K3/(27kA*), and the maximum value of ® as 1.155,
all within a few percent of the numerical values.

We now remove the restrictions c2 + cg =ciand K, =
K3, only quoting results. The transition temperature

becomes t. = A2/ K3. The square of the amplitude is
ci +c;‘; :c(z,—{— %Kl(cz)"/a+0(e3) ; (14)

the leading correction [the second term on the right-hand
side of Eq. (14)] is of order €2. Equation (11), from which
generalizations of Egs. (9), (10), and (12) can be ob-
tained, becomes

_ 631’{::;3 Kgcg
- 2K,A4 K1

[@4(c")? - @21 - ()] + (")
(15)

where C(X) = [Kit./(K3c2e)]*/? cy(z). The important
points are that the modulated structure remains univer-
sal and that the transition remains third-order when the
restrictions are removed.

B. Transition from the uniform chiral phase

This transition is of nucleation type, as discussed in
Ref. [10]. Its nature can be simply understood in the
|e| = 1 limit; letting the director magnitude |c| vary with
z makes no qualitative difference.

Near the transition to the uniform chiral phase, the
modulated phase is composed of stripes in which, to a
very good approximation, ¥ alternates between %1, [see
Fig. 5(b)]. Within each stripe, the phase ¢ varies lin-
early between *¢¢; the extremal phase ¢ is determined
by minimizing the free energy, and it approaches 7/2 at
the transition. The stripes are separated by narrow do-
main walls, or solitons, in which ¥ and ¢ vary rapidly.
With these approximations, the average free-energy den-
sity takes the form

a b
where [ is the width of the stripes, and the coefficients

are

2601
a = (—kt/2)Y? 2 — 2x , (16b)
b=n*Ki+ K3)/4; (16c)

this is a modest generalization of Eq. (4) of Ref. [10].
The coefficient a represents the effective free energy of
a domain wall, while the term b represents the positive
free energy due to the spatial variation of ¢ within the
stripes, as seen in Fig. 5; the interaction energy of the
domain walls is discussed below. As long as a is positive,
the free energy is minimized by ! = oo, and the state
is uniform. For sufficiently large A, @ becomes negative
(as does the free energy), resulting in a condensation of
solitons. The average width of the stripes diverges as
I~ (A= X)L, where A\, = —t[k/(8u)]'/?; this is a good
approximation for the critical line in the small ¢ limit of
the phase diagram. Correspondingly, the wave number
g (o< 1/1) vanishes linearly at the transition, as seen in
Fig. 6.

The expression (16a) for the free energy, and the linear
vanishing of g, are unusual. In a typical model of the
Lifshitz-invariant class of incommensurate systems, the
expression corresponding to (16a) is [19]

(Fy=ad'q+bgexp(—c'/q), (17)
where a’ vanishes at the transition, and &', ¢’ > 0; the sec-
ond term results from the repulsive interaction of domain
walls. Correspondingly, ¢ vanishes as —c'/In(—a’/b’)
rather than linearly. Linear behavior was also found for
the incommensurate state of CsCuCls in a transverse
magnetic field [20], for the same reason: the commen-
surate state is continuously degenerate and the modu-
lated phase near the transition is a succession of nearly
commensurate states, a spatially varying commensurate
phase with walls. The overshooting of the order parame-
ters seen in Fig. 5 (the phenomenon was apparently first
noticed in Ref. [21]) usually indicates an exponentially
damped, oscillatory interaction between domain walls
and a first-order transition [22]. But this interaction
(whether attractive or repulsive) is exponentially weak
and negligible compared to the energy from the spatial
variation within the domains, and so does not appear in
Eq. (16a).

C. Transition between the soft
and stiff striped phases

Simple symmetry considerations indicate that this
transition belongs to the Ising universality class. The
soft striped phase consists of a colinear director field
¢ = (0,cy(x)) and an oscillating chiral order parame-
ter ¥(z). The functions ¢y (z) and ¥ (z) are periodic in
z, satisfying cy(z) = —cy(—=z) and ¢(x) = ¥(—z). This
structure is thus invariant under rotation by :

T (18)

At the transition to the stiff striped phase, the compo-
nent c, of the director field becomes nonzero. The order
parameter associated with this transition is thus c;(z),

r— -—-r: c— —c,
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which satisfies ¢;(z) = c,(—z). The precise functional
form of c;(z) can be calculated by solving the Euler-
Lagrange equations corresponding to the model (2), but
is not needed for the present analysis. The relevant im-
portant feature is that when c,(x) becomes nonzero, the
twofold symmetry (17) is broken. The transition is there-
fore described by a scalar order parameter [say the am-
plitude of the function ¢, (z)], and thus belongs to the
Ising universality class. v

A second-order transition occurs between the two uni-
axial states at ¢ = —5.226 for A = 2; the stiff state is
unstable (cannot be obtained numerically) for larger ¢,
and the soft state is metastable for smaller £. Another
second-order transition between these two states occurs
at t = 1 (for A = 2), but in this region the vortex state
is optimal; the stiff state is unstable (in the same sense)
at smaller ¢, and the soft state metastable at higher ¢.

D. Transitions to the vortex phase

The phase transitions from the two striped phases to
the vortex-lattice phase are expected (and found) to be
of first order since there is no group-subgroup relation
between the phases which are separated by the transition.

IV. SUMMARY

The phase diagram and the nature of the phase transi-
tions of nonchiral Langmuir monolayers and smectic films
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were analyzed. The phase diagram displays two types of
striped phases, corresponding to colinear and noncolinear
director fields. It also exhibits two uniform phases (one
chiral and one nonchiral) and a vortex-lattice phase. The
transition from the uniform nonchiral phase is found to
be of intermediate type, which has previously been ex-
pected to exist in chiral systems. This transition was
analyzed within the mean-field approximation. It would
be interesting to examine experimental results concern-
ing this transition in view of the theoretical predictions
obtained in this study. It would also be interesting to an-
alyze the effect of fluctuations (by, say, renormalization-
group techniques) on the nature of this phase transition.

In the present work we considered the structures of the
director field and the chiral order parameter which may
occur on isotropic smectic films or in Langmuir mono-
layers. We did not consider textures corresponding to
hexatic systems. The coupling between the director field
and the hexatic order has been considered in some detail
by Fischer et al. [14]. Experimentally, smectic films were
found to exist in both liquid and hexatic phases [6,12,13].
On the other hand, in Langmuir monolayers the tilt order
is usually found to be accompanied by some structural
hexatic order [23].
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